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Short note

Spin-orbit-like terms in semileptonic weak Hamiltonian
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Abstract. It is shown that new spin-orbit-like terms appear in the effective nonrelativistic weak Hamilto-
nian for nucleon provided that nuclear potential is taken into account. Arguments for their considerable
enhancement, in particular, in relativistic nuclear model of Walecka are advanced.

PACS. 23.40.-s beta decay; double beta decay; electron and muon capture – 25.30.Pt Neutrino scattering

Effective weak Hamiltonian for nucleon is given by co-
variant product of lepton current Jλ and nucleon current
operator Γλ. To use nonrelativistic nucleon wave functions
one puts effective Hamiltonian to nonrelativistic form by
Foldy–Wouthuysen (FW) transformation (see, e.g., [1]).
Nonrelativistic Hamiltonian is a power series in kλ/M ,
where kλ is the 4-vector of transferred momentum, and
M is the nucleon mass. To describe β-decay, where an
energy release is about 10−3M , one uses only zero order
terms. Whereas first order terms are of importance for
muon capture, where an energy release is about 10−1M ,
as well as for neutrino-induced reactions involving trans-
ferred momenta of the same order of magnitude.

For the sake of definiteness we shall consider muon
capture. Before capture a muon is in the 1s state of mesic
atom and is described by the 4-component wave function
ψµ(rµ, t), Eµ is the total energy of muon. A final neutrino
with momentum kν and energy Eν = kν is described by
the 4-component wave function ψν(rν , t). Assuming that
the weak nucleon-lepton interaction is pointlike one ob-
tains for the lepton current

Jλ = iψ+
ν (r, t)γ4γλ(1 + γ5)ψµ(r, t). (1)

Then the effective relativistic Hamiltonian can be written
in the form

HW =
G cos θC√

2
iJλΓλτ−, (2)

where G is the weak-interaction coupling constant, θC is
the Cabibbo angle, and the lowering operator τ− trans-
forms a proton into a neutron. The operator of the weak
nucleon current is given by (see, e.g., [2])

Γλ = γ4

(
gV γλ +

gM
2M

σλρkρ − gAγλγ5 − i
gP
m
kλγ5

)
. (3)

Here σλρ = (γλγρ − γργλ)/2i, m is the muon mass, and
kλ = (kν ,−i(Eµ −Eν)) is the 4-momentum transfer. The

form factors of vector interaction gV , axial-vector interac-
tion gA, weak magnetism gM , and induced pseudoscalar
interaction gP depend on k2 = kλkλ. We omit the contri-
bution of the second class currents (i.e. scalar and tensor
terms).

One usually performs FW transformation for free nu-
cleon describing by Hamiltonian HN = Mβ + αp. First
order terms in 1/M were first obtained in [3], whereas the
second order corrections ∼ 1/M2 were calculated in [4,5]
(see also [6,7]). However, the nucleons inside a nucleus are
not, in fact, free.

Let us take the one-nucleon relativistic Hamiltonian in
the form

H = Mβ +αp + U(r) +HW , (4)

where nucleon-nucleus potential U(r) is assumed for sim-
plicity to be of a central type. According to FW procedure,
H −Mβ has to be presented as the sum of even E and
odd O parts. Then the nonrelativistic Hamiltonian takes
the form

H ′ = M + E +
βO2

2M
− [O, [O, E ]]

8M2
− i[O, Ȯ]

8M2
+ . . . , (5)

where [A,B] = AB−BA. It is well known that crossing of
the operator αp enteringO with the potential U(r), which
belongs to E , in the term ∼ [O, [O, E ]] leads to Darwin
and spin-orbit interactions being of the second order in
1/M . In a similar manner crossing of odd operators from
HW with U(r) gives additional second order terms, which
never took into account.

The result of FW transformation of the Hamiltonian
(4) is of the form

H ′ = M +
p2

2M
+U(r) +

∆U(r)
8M2

+
U ′(r)
4M2r

(σ[r×p]) +H ′W ,

(6)
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H ′W = G cos θC√
2

(
iJ4

[
GV +GP (σnν) +

+ gA(σ p
M

) + gP
iU ′(r)
4M2r

(σr)
]

+

+ J
[
GAσ + gV

p
M

+ gV
U ′(r)
4M2r

[σ × r]
])
τ−,

(7)

where nν = kν/kν . Nonrelativistic weak Hamiltonian (7)
includes the known zero and first order terms [2] and two
new spin-orbit-like second order terms, which are propor-
tional to U ′(r). We omit all other second order terms ob-
tained in [4,5]. Usual notations for renormalized form fac-
tors are used

GV = gV (1 + Eν
2M ), GP = Eν

2M (gP − gA − gV − gM ),

GA = gA − Eν
2M (gV + gM ).

(8)
It is worth noting now that nuclear spin-orbit coupling

is enhanced as compared to the term entering (6) by the
factor of ∼ 20 (and has the opposite sign) [8]. Thus, one
may hope for a similar enhancement of the spin-orbit-like
terms in the weak Hamiltonian (7). It is of importance
because the second order terms enhanced by the factor of
∼ 20 would be of the same order of magnitude than the
first order terms.

To demonstrate the feasibility for such effect one can
address to relativistic nuclear model of Walecka [9,10]. In
its simplest version a nucleon interacts with meson mean
fields, one of which, Φ(r), is scalar, and the other, V (r),
is timelike component of 4-vector. The one-nucleon rela-
tivistic Hamiltonian takes the form

H = Mβ +αp + V (r)− Φ(r)β +HW . (9)

Both functions V (r) and Φ(r) are positive, however, as it
is seen from (9), Φ(r) and V (r) represent attractive and
repulsive potentials, respectively. Both potentials are very
strong, e.g., V (0) ' 0.37M and Φ(0) ' 0.45M for 40Ca
nucleus [11], but they almost cancel in (9).

This model describes the magnitude and the sign of
nuclear spin-orbit coupling [12]. Indeed, FW transforma-
tion of (9) gives

H ′ = M + p2

2M + V (r)− Φ(r) + ∆V (r)
8M2 −

− {∇, {∇, Φ(r)}}
8M2 + V ′(r) + Φ′(r)

4M2r
(σ[r× p]) +H ′W ,

(10)

where {A,B} = AB+BA. It is seen that scalar and vector
contributions add up in the spin-orbit term, resulting in
its enhancement.

So, the question is, does the same summation arises
for the spin-orbit-like terms in H ′W ? It turns out that this
is the case. The weak Hamiltonian is of the form (7) with
U ′(r) → V ′(r) + Φ′(r) if one neglects corrections ∼ Φ/M
to the form factors.

Thus, it is shown that new spin-orbit-like terms ap-
pear in the effective nonrelativistic weak Hamiltonian for
nucleon provided that nuclear potential is taken into ac-
count. Being enhanced by the factor of ∼ 20, they may
give the contribution of the same order of magnitude than
the first order terms, usually allowed for. Finally, it is
shown that such enhancement really arises in the Walecka
model.

New terms in weak Hamiltonian may result in an im-
provement of description of some muon capture data. For
instance, the results obtained in [13] for 28Si nucleus point
out an anomalous low value of gP . On the other hand,
search for new terms contribution to the weak semilep-
tonic interaction may be considered as a test for relativis-
tic nuclear model. The other test based on a lowering of
the threshold for pp̄ production on a nucleus was recently
proposed in [14].
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